ORIGIN OF PRIMORDIAL PERTURBATIONS

NEMANJA KALOPE
UC DAVIS

C:
MANOJ KAPLINGHAT
MATT KLEBAN
ALBION LAWRENCE
STEVE SHENKER
LENNY SUSSKIND
OUTLINE

* EFT and the Universe
* Cosmological problems and Inflation
* Emergence of Perturbations
* Perturbations and New Physics
* Summary
COSMOLOGY

Recourse to effective field theory:
Classical GR is not a stand-alone theory because it is not UV complete

Loop divergences!

Instead: A theory with a cutoff:

\[l > \ell_p \sim M_p^{-1} \]

Works wonderfully at distances long compared to \(\ell_p \) decoupling

In cosmology: Physics at scales \(L \) is independent to leading order of the physics at scales \(\ell \ll L \)

Locality, causality & covariance!

Caveat: Cosmological constant problem so far defied all attempts to solve it within a local, causal, covariant framework. Does this suggest our assumptions are wrong?

We will continue to ignore this...
BASIC OBSERVATIONS

THE UNIVERSE IS:

* VERY OLD AND BIG
 \(t \approx 14 \cdot 10^9 \text{ yrs} \) AND \(L \approx 4500 \text{ Mpc} \)

* HOMOGENEOUS AND ISOTROPIC
 (THE SAME FOR ANY OBSERVER AT A GIVEN TIME, WITH ACCURACY \(\Delta \approx 10^{-5} \))

* SPATIALLY FLAT
 (WITH SPATIAL GEOMETRY APPROXIMATED BY EUCLIDEAN GEOMETRY, WITH ACCURACY \(1\% \))

* EXPANDING, WITH \(U = H R \)
 (HUBBLE'S LAW, \(H \approx 65 \text{ km/s/Mpc} \))

* FILLED WITH MATTER WHICH IS MOSTLY INVISIBLE
 (THE USUAL BARYONS & LEPTONS COM普RIZE ONLY ABOUT \(\approx 1\% \) OF THE UNIVERSE)
CMB ANISOTROPIES

However, the universe is NOT perfectly smooth — there are "small blemishes" — perturbations in the distribution of matter

$$\frac{\delta \rho}{\rho} \approx 10^{-5}$$

Galaxies, clusters, nebulae ... they yield the small temperature fluctuations in the CMB:

$$\frac{\delta T}{T} \approx \frac{\delta \rho}{\rho} \approx 10^{-5}$$

Sachs-Wolfe

Measured in the CMB!

COBE, 1982

CMB anisotropies a perfect tool for observers!

Boomerang, Maxima, WMAP, Planck, ...
70's Harrison & Zeldovich

The observed structures in the universe (galaxies, clusters, voids etc) can be explained by gravitational instability (→ clumping) if there was an initial scale-invariant spectrum of fluctuations.

What gave rise to it?

The answer is related to the solution of the other cosmic conundra...

Homogeneity, isotropy, age, flatness...
LAST SCATTERING SURFACE

US

R

CAUSAL REGIONS AT DECOUPLING

THESE REGIONS ARE OUTSIDE OF CAUSAL CONTACT !!!
WE SHOULD EXPECT THE UNIVERSE TO LOOK MUCH MORE PATCHY!

\[\frac{\Delta T}{T} \sim 1, \text{ not } 10^{-5}?! \]
CURVATURE PROBLEM

BOUNDARY OF VISIBILITY AS A FUNCTION OF TIME

WHY IS THE BALLOON SO BIG?!
FLATNESS

\[H^2 + \frac{k}{a^2} = \frac{8\pi G N}{3} \rho \]

DEF: \[\Omega = \frac{\rho}{\rho_c} = \frac{\rho}{\frac{3H^2}{8\pi G N}} \]

\[\Omega = 1 + \frac{k}{a^2 H^2} \]

TODAY: \[H^{-1} \sim 10^{60} \text{ lp} \quad a \gtrsim 10^{60} \text{ lp} \]

PLANCK: \[H^{-1} \sim \text{ lp} \quad a \gtrsim 10^{30} \text{ lp} \]

\[\therefore \quad \Omega = 1 + 10^{60} (\Omega_p - 1) \]

AT THE PLANCK TIME \(\Omega_p \) MUST BE 1 WITH THE PRECISION OF ...

1 PART PER 10^{60}!
A solution:

COSMIC INFLATION

A. Guth, 81, A. Linde, 82
A. Albrecht & P. Steinhardt, 82

Idea: The very early universe was dominated by dark energy — a non-clumping form of matter with $\rho \sim \text{const}$

Then

$$3H^2 + 3\frac{k}{R^2} = 8\pi G N \rho \sim \text{const}$$

$\rightarrow H \sim \text{const}, R \sim e^{Ht}$

The cosmic balloon started growing exponentially fast!
\(c t_p \sim 10^{43} \) lightseconds

INFLATION + SUBSEQUENT EVOLUTION

OUR OBSERVABLE UNIVERSE

\(10^{10} \) lightyears
DYNAMICS OF INFLATION

\(\phi : \text{INFLATON FIELD} \)

\[
H = \frac{\ddot{a}}{a} = \frac{\dot{\phi}^2}{2} + V(\phi)
\]

\[
3H^2 = 8\pi G_N \left(\frac{\dot{\phi}^2}{2} + V(\phi) \right)
\]

\[
\ddot{\phi} + 3H \dot{\phi} + \frac{\partial V}{\partial \phi} = 0
\]

INFLATION OCCURS WHEN THE FRICTION TERMS DOMINATE OVER THE ACCELERATION TERMS: SLOW ROLL

ANALOGY: PENDULUM IN A VERY VISCOUS MEDIUM

OVERDAMPED!

BUT: IN GM IT FLUCTUATES!
Quantum fluctuations of the inflaton are imprinted on the background as small ripples on the space-time, so they produce density fluctuations. The overdense regions will eventually begin to collapse by Jeans instability. The origin of structure: galaxies etc...

Heuristic "derivation"

\[\delta \rho \sim H_0 \delta \tau \]
\[\delta \phi \sim \phi \delta \tau \]
\[\frac{\delta \rho}{\rho} = \frac{H}{\phi} \delta \phi \]
BACKGROUND METRIC ALSO FLUCTUATES

→ TENSOR GRAVITON MODES ARE GETTING EXCITED

TO COMPUTE: GO TO THE AXIAL GAUGE (TRANSVERSE - TRACELESS) AND RECALL THAT EACH GRAVITON POLARIZATION IS A (SCALAR FIELD) X (POLARIZATION TENSOR)

\[\frac{\delta g_{\mu\nu}}{g} = 2 \frac{\delta h}{M_p} \]

TO LEADING ORDER BOTH \(\delta \phi \) AND \(\delta h \) ARE FIELDS WHICH HAVE WEAK SELF-INTERACTIONS AND COUPLE TO THE BACKGROUND → TREAT THEM AS ESSENTIALLY FREE FIELDS IN INFLATING SPACETIME

FLUCTUATIONS ≈ PARTICLE PRODUCTION
A pair created from the vacuum can

- Annihilate, leading to a bubble
diagram correction to \(\lambda_4 \) fine-tuned
away as is usual

- Prevented from annihilation by
cosmological stretching
Bogoliubov
particle production \(\propto \) imprinting
of a classical wave

\[
\lambda_{\text{physical}} = \frac{a(t)}{k}
\]

\(k \): wave vector

When \(\lambda_{\text{physical}} \geq H^{-1} \) mode
"freezes": e.g. define conformal
time \(\eta = -\frac{1}{H} e^{Ht} \) and \(\psi = \frac{\Phi}{\eta} \):

\[
\psi'' + \left(k^2 - \frac{2}{\eta^2} \right) \psi = 0
\]

So: when \(k^2 \eta^2 \leq 2 \rightarrow \lambda_{\text{physical}} \geq H^{-1} \)

modes become power-law: \(\psi \rightarrow \frac{A}{\eta} + B \eta^2 \)

\[
\Phi \rightarrow A + B e^{-3Ht}
\]

Freeze-out!
Indeed: consider small fluctuations

\[\ddot{\phi} + 3H \dot{\phi} + \left(m^2 + \frac{k^2}{a^2} \right) \phi = 0 \]

A technical aside: for simplicity take \(H = \text{const}, \alpha = \alpha_0 \exp(Ht) \)

Define conformal time \(\eta = -\frac{1}{H} \exp(-Ht) \)

And redefine the scalar by \(\phi = \eta \psi \)

Using \(f' = \frac{df}{d\eta} \),

\[\psi'' + \left(k^2 - \frac{2 - \frac{m^2}{H^2}}{\eta^2} \right) \psi = 0 \]

Ignore \(\frac{m^2}{H^2} \); then:

1) \(\eta^2 \gg \frac{2}{k^2} \rightarrow \psi \sim A \cos(kt + \delta) \)

UV: \(\phi_k \sim e^{-Ht} \phi_0 \cos(kt + \delta) \)

2) \(\eta^2 \ll \frac{2}{k^2} \rightarrow \psi \sim \frac{A}{\eta} + B \eta^2 \)

IR: \(\phi_k \sim A + B e^{-3Ht} \)
INDEED: CONSIDER GAUGE-INvariant SMALL FLUCTUATIONS: BARDEEN

\[ds^2 = a^2 \left(-(1 - 2 \Phi) d\eta^2 + (1 + 2 \Phi) dx^2 \right) \]

\[\phi = \phi(\eta) + \delta \phi(\eta, \vec{x}) \]

\[\phi' \delta \phi = -2 M_p^2 (\Phi' + \frac{a'}{a} \Phi) \]

CURVATURE PERTURBATION: MUKHANOV, 82

\[\Psi = a \delta \phi - \frac{a \phi'}{a'/a} \Phi \]

\[\therefore \text{DURING SLOW ROLL INFLATION, } H = \text{const, } \]

\[a = a_0 \exp(HT), \quad \eta = -\frac{1}{H} \exp(-HT) \]

as \(\eta \to -\infty \)!

\[\Psi'' + \left(k^2 - \frac{2 + \ldots}{\eta^2} \right) \Psi_k = 0 \]

IN THE IR THIS REDUCES TO A BEAUTIFUL PICTURE OF CLASSICAL PARAMETRIC RESONANCE: L. KOFMAN
CURVATURE PERTURBATION

\[\Phi \sim \frac{H}{\phi} \langle \frac{\Phi}{a} \rangle \]

Quantum mechanics determines the normalization of \(\langle \frac{\Phi}{a} \rangle \).

Standard result: \(\langle \frac{\Phi}{a} \rangle \sim H \)

\[\frac{\delta \rho}{\rho} \sim \frac{H^2}{\phi} \]

Almost independent of \(K \) (i.e., \(E \)) since \(H \approx \) const., \(\phi \approx \) const. during slow roll regime.
\[y(t) = y_0 a(t) e^{\frac{t}{\tau}} \]

\[y \leq y_2 \]

\[x \leq y_1 \]

\[x \geq y_{\text{H} - 1} \]

\[x \leq y_{\text{H} - 1} \]

\[\frac{y}{\cos(\kappa t + \phi)} \]
Typically, using Eqs of Motion

\[H \sim \frac{\sqrt{V}}{M_p} \quad \phi \sim \frac{1}{H} \frac{\partial V}{\partial \phi} \]

\[\frac{\delta p}{p} \sim \frac{V^{3/2}}{M_p V^1} \sim \left(\frac{M}{M_p} \right)^\alpha \]

\[M = V^{1/4} : \text{Scale of Inflation} \]

\[\alpha : \text{Low Integer:} 1, 2, \ldots \quad \text{(Model-Dependent)} \]

\[\frac{\delta p}{p} \sim 10^{-5} \rightarrow M \sim 10^{10} M_p - 10^{-5} M_p \]

ONE INPUT! SLOW ROLL GUARANTEES SCALE INVARIANCE!

KEY PREDICTION...
TIMELIKE WORLDLINE

REHEATING

APPARENT HORIZON $l_A = H^{-1}$

KALOPER, KEEBAN, LAWRENCE, SHENKER, 2002
Note: $M \sim 10^{-10} \text{Mp} - 10^{-5} \text{Mp}$

$M \sim 10^9 \text{GeV} - 10^{14} \text{GeV}$

Could inflationary dynamics be sensitive to new high energy physics?
WHICH SCALES ARE FUNDAMENTAL?

EG: GAUGE HIERARCHY PROBLEM: WHY ARE THERE SUCH DISPARATE SCALES WHERE DIFFERENT FORCES BECOME STRONG?

* DESERT PARADIGM: ALL FORCES UNIFY NEAR MGUT ~ 10^{16} GeV AND THE TeV-MGUT DESERT IS PROTECTED BY SUSY, BROKEN AT TeV

* REALLY HIGH SCALES IN NATURE!

* LARGE X-TRA DIMENSIONS: ALL FORCES BECOME STRONG AT TeV, AND HIERARCHY COMES FROM DILUTION IN X-TRA D

LOW ENERGY INDICATIONS OF HIGH SCALES ARE A MIRAGE!

TESTS:

* PROTON DECAY - IRRELEVANT OPERATORS

* RG RUNNING - LOG. UNIFICATION

* COSMOLOGY - INFLATION

BRANDENBERGER & MARTIN
TAMAŃ
EASTHER, GREENE, KINNEY, SHIO
KEMPF & NIEMEYER
HUÍR & KINNEY
K-LS, KKLS, KK
DANIELSSON
STARENINSKY & TEACHOU
BURGESS, HOLMAN, CLINE, LEMIEUX
GIUDICE, KOLB, RIOTTO & TEACHOU
CHUNG, NOTARI, RIOTTO...
UNCONTROLLABLE MATH

EFT

TOO SMALL NUMBERS
To calculate fluctuations: use effective field theory!
There are 4 scales in the in ascending order:

\[m < H < M < \sqrt{\phi} \]

Inflaton mass Hubble scale Scale of new physics Scale of inflaton kinetic energy

Split the theory as background + fluctuations and organize it by these scales:

Fluctuations light: \(m < H \)
New physics heavy: \(M > H \) integrate out!

Result: effective action for fluctuations on top of the inflating background!

Background "decoupled": \(\sqrt{\phi} > M > H > m \)
So it is merely a spectator (once one ensures that radiative corrections do not lift the inflaton potential!)

Calculation: recall \(\frac{\delta p}{p} = \frac{H \delta \phi}{\dot{\phi}} \)
Quantum mechanics provides the correct normalization for these modes.

Must quantize in curved space-time. Choice of vacuum!!

\[\delta \phi = \delta \phi_0 + \delta \phi_1 + \delta \phi_2 + \ldots \]

Free interactions

\[\delta \phi_0 = \langle \phi \phi \rangle^{\frac{1}{2}} = \frac{H}{2\pi} \]

\[\delta \phi_1 = \langle \phi \phi \phi \rangle^{\frac{1}{2}} = \frac{H}{2\pi} c \frac{H^2}{M^2} \]

\[\delta \phi = \frac{H}{2\pi} (1 + c \frac{H^2}{M^2} + \ldots) \]

Similar procedure for tensors!
This leads to \(\delta_s = \frac{2}{5} \frac{d\rho}{\rho} \)

\[
\delta_s = \frac{1}{\sqrt{75 \pi}} \frac{V^{3/2}}{m_{pl}^3 \partial_x V} \left(1 + C_s \frac{H^2}{M^2} + ... \right)
\]

\[
\delta_T = \frac{1}{\sqrt{160 \pi}} \frac{V^{1/2}}{m_{pl}^2} \left(1 + C_T \frac{H^2}{M^2} + ... \right)
\]

\[
def: \eta_T = 2 \frac{2 \ln \delta_T}{\partial_x \ln k} \quad \text{TENSOR TILT}
\]

\[
\epsilon = \frac{3 \phi^2}{2 V} \quad \text{SLOW ROLL PARAMETER}
\]

\[
\eta_T + 2 \left(\frac{\delta_T}{\delta_s} \right)^2 = -2 \epsilon C_s \frac{H^2}{5 M^2} + O(\epsilon^2)
\]

An in-principle effect of new physics which leads to deviations away from the standard inflationary consistency condition to subleading order in \(\eta_T \).

Kaloper, Kleban, Lawrence, & Shenker, 2002

\[
\text{Without } \delta_T, \text{ we could reinterpret } \propto C_s \frac{H^2}{M^2}
\]

as a different potential
Our result \(\alpha \frac{H^2}{M^2} \) depends crucially on vacuum choice: Thermal (aka adiabatic, bunch-Davies...) vacuum.

Other choices: Inflation approx DE Sitter \(\Rightarrow \) vacuum (approx) DS invariant

In DS \(\rightarrow \) continuous \(\infty \) of invariant states!

\[
\alpha_k^\alpha \mid \alpha \rangle = 0
\]

\[
\alpha_k^\alpha = N_\alpha \left(\alpha_k - e^{-\alpha^*} \alpha_k^* \right), \quad N_\alpha = \frac{1}{\sqrt{1 - \exp(\alpha + \alpha^*)}}
\]

Chernikov & Tagirov; Gehenna & Schnabl; Schnabl & Spindel; Moffola; Allen; Basso, Maloney & Strominger

\(\text{Re} \alpha < 0 \)

Corrections to \(\frac{\delta P}{P} \propto \left(H \frac{H}{M^2} t \cdots \right) \)

Danielsson; Easther, Greene, Kinney & Shin

But: Backreaction huge, attempts to control it break locality, decoupling...

KLLSS
Banks & Mannelli
E. V. Horn & Larsen

Positive message: Thermal vacuum is the right choice!
THINKING IN A BOX ...

\[\Phi = 0 \quad \text{THERMAL} \ (\alpha = 0) \quad \Phi \neq 0 \ (\alpha \neq 0) \]

\[\alpha \neq 0 \quad \text{LEVEL OCCUPANCY} \rightarrow e^\alpha \ E > 1 \times 10^{-4} \]

\[\therefore \text{SEES A SHOWER OF HIGH ENERGY QUANTA} \rightarrow \text{AT THE HORIZON THEIR ENERGY} \rightarrow \infty \text{BECAUSE OF BLUESHIFT} \]

WHY WOULD \[\text{TRUST} \ E \text{F OF THE BACKGROUND ??} \]
\[\lambda = \frac{a(t)}{k} \]

BUT:

- Consider \(\Theta \neq \Phi \)
- \(\lambda_{\text{phys}} > H^{-1} \)
 \(\Theta \rightarrow \hat{A} + \frac{\hat{B}}{a^3} \) "FREEZE-OUT"
- \(\lambda_{\text{phys}} < H^{-1} \)
 \(\Theta \rightarrow \frac{A}{\alpha} \cos (k\eta + \delta) \)

GAUGE INARIANT CURVATURE PERTURBATION
AT HORIZON CROSSING

\[\chi_{\text{phys}} = \frac{a_0}{k} \sim H^{-1} \Rightarrow k \sim a_0 H \]

\[\Theta_0 \sim \frac{A_0}{a_0} \sim 10^{-5} \text{ COBE!} \]

So: when \(\lambda_{\text{phys}} \sim l_p \sim \frac{a}{k} \)

\[a \sim a_0 H l_p \sim a_0 \frac{H}{M_p} \]

THERE:\[\left| \Theta \right| \sim \frac{A_0}{a_0 H} \sim \frac{M_p}{H} \cdot 10^{-5} \]

CMB: \(H \lesssim 10^{14} \text{ GeV} \)

so \[\frac{M_p}{H} \gtrsim 10^5 \]

Thus: when \(\lambda_{\text{phys}} \sim l_p \),

\[\left| \Theta \right| \geq 1 \]

BREAKDOWN OF PERTURBATION THEORY!
WHAT CAN ACTUALLY BE SEEN?

NEED TO OBSERVE TENSORS \(\rightarrow \) E.G. BY
CMB POLARIZATION MEASUREMENTS

THE WORST OBSTACLE COSMIC VARIANCE
TO MEASURE \(\frac{\delta T}{T} \) WE SAMPLE \(\leq 1000 \)
REGIONS OF THE SKY; STATISTICAL
VARIANCE IS \(\sigma \sim \frac{1}{\sqrt{2\pi+1}} \sim \frac{1}{\sqrt{1000}} \sim \% \)

HENCE: ANY CORRECTION MUST
BE \(> 0.01 \) TO BE OBSERVABLE

@ SLOW-ROLL PARAMETER \(\varepsilon \leq \frac{1}{15} \)

MUST HAVE

\[
\frac{C_s H^2}{M^2} \geq 0.1 - 1
\]

TO BE OBSERVABLE!
In all essentially 4D models with $M_4 \sim 10^{19} \text{ GeV}$ (e.g. weakly coupled heterotic string theory with $g_s^2 \sim 0.1$, $M_5 \sim 10^{19} \text{ GeV}$), any new physics will either:

* Contribute at the cutoff $\sim M_4$.
* Get higgsed by ϕ to m_4.

Hence: $M \sim m_4$.

@ Scale of inflation $H < 10^{14} \text{ GeV}$

$$\frac{H^2}{M^2} \lesssim 10^{-11}$$

Completely unobservable!

† Exception: it is possible to have couplings $(\lambda + \phi) \bar{\psi} \psi$ which give $M_4 \sim 0$ during inflation - WIMPZILLAS will produce a blip! Linde et al., Chung et al.
\[
\frac{\delta \rho}{\rho} \quad (1) = \sum_{KK} \frac{H^2}{M_{Pl}^2} = c N \frac{H^2}{M_{Pl}^2} = c \frac{H^2}{M_f^2}
\]

By Gauss law:
\[
N = (M_f L)^n = \frac{M_{Pl}^2}{M_f^2}
\]
With this, \exists models with observable signatures in the CMB.

E.g., manifolds with G_2 holonomy

Singularity giving rise to G_2 holonomy group

Codimension 4

$M_f \sim m_{11} \sim 4 \times 10^{13}$ GeV

$\frac{c H^2}{M_f^2} \sim 0.1$

Warning: Calculations imprecise!
MORE PRECISELY:

CONSIDER COMPACTIFICATIONS WITH

- \(m_{Pl}^2 = m_{Pl,d}^2 V_{d-4} = (2 \times 10^{18} \text{GeV})^2 \)

- \(\alpha_{gauge} = \frac{g^2}{4\pi} \sim \frac{1}{25} \) so that RG running produces the right value at TeV

- \(\frac{1}{H} > (V_{d-4})^{\frac{1}{d}} \) 4D description

- \(F_{4D} \sim \int d V_{d-4} \) sub-planckian

i.e. \(\frac{H^2}{m_{Pl,d}^2} \sim \frac{\int d^4} {m_{Pl,d}^2} \lesssim O(1) \)

S.T. HIGHER-DIMENSIONAL SUGRA IS VALID!

SIGNAL COULD BE CRANKED UP!

NOTE:
1) GIVES UP 4D UNIFICATION, AS \(m_{Pl,d} \sim H \sim 10^{14} \text{GeV} \)
2) PROTON DECAY PROBLEMS
POSSIBLE IMPROVEMENT: DIRECT GRAVITY WAVE DETECTION since $\lambda \ll H^{-1}$, there are NO COSMIC VARIANCE CONSTRAINTS BUT: HARD TO DETECT (WEAKNESS OF GRAVITY...)

AN OPTIMISTIC PROPOSAL: GREAT MISSION

Cornish, Spergel & Bennett

SENSITIVITY $\sim 10^{-3}$ - 10^{-4} INFLATION

$$\left(\frac{H}{M} \right)^2 \sim 10^{-4} \implies H \sim 10^{14} \text{ GeV}$$

$$M \sim 10^{16} \text{ GeV}$$

GUT SCALE \rightarrow NEAR HÖRAVA-WITTEN

... THIS WOULD BE FAR IN THE FUTURE, BUT AT LEAST IS POSSIBLE IN PRINCIPLE...
What if inflation were short, or there were significant features in the inflaton dynamics \(\sim 60 \) e-folds before the exit?

Burgess, Cline, Holman, Lemieux

Signal could be parametrically slightly larger: \(\propto \frac{H}{M} \) instead of \(\left(\frac{H}{M} \right)^2 \)

But: this is still a low-energy effect, having nothing to do with transplanckian scales

Inflaton fluctuations are produced in a state which is not the thermal vacuum but some "excited" state generated by "environmental" circumstances
INFLATION WITH A HICKUP

M. KAPLINGHAT & N.K.
HEP-TH/0307013

CONSIDER QUANTUM-MECHANICAL ANALOGY:

IF TRANSITION SHARP, THE SYSTEM REMAINS IN THE STATE IT OCCUPIED BEFORE THE TRANSITION WHICH IS NOT A VACUUM ANYMORE!
This state is a squeezed state on top of the thermal vacuum and the inflaton fluctuations are produced in it. They carry the information about the deviation of this state from the vacuum, correcting the thermal vacuum result for $\delta \rho / \rho$.

J. Bjorken
A. Starobinsky
M. Kaplinsky & N.K.

Example: Consider a potential where the slow roll parameter $\eta = -\dot{\phi}/H \phi$ jumps ~ 60 e-folds before the end of inflation, or where inflation was short, starting from some non-vacuum state.
USE GAUGE-INвариANT PERTURBATION THEORY:

\[\varphi = a\delta\phi - \frac{a\phi'}{a/\lambda} \]

\[\varphi''_{k} + \left(k^{2} - \frac{N''}{N} \right) \varphi_{k} = 0 \]

\[\frac{N''}{N} = \frac{2}{\eta^{2}} + \frac{1}{2} \left(\frac{\epsilon'}{\epsilon} \right) + \ldots \quad \epsilon = \frac{\phi'^{2}}{2M_{P}^{2}N^{2}} \]

A JUMP IN \(\eta = -\frac{\phi''}{\Delta \phi} \) PRODUCES A CANONICAL TRANSFORMATION:

\[\varphi_{k}(\eta^{+}) = \varphi_{k}(\eta^{-}) \]

\[\Pi_{k}(\eta^{+}) = \Pi_{k}(\eta^{-}) - \Delta(\eta^{-}\epsilon) \Delta_{k} \varphi_{k} \]

BOGOLIUBOV TRANSFORMATION IN THE PERTURBATIVE HILBERT SPACE - THE STATE OF THE INFLATION DIFFERENT FROM THE THERMAL VACUUM AFTER THE TRANSITION
\[\langle \eta,e \rangle = -i \Delta(\eta-e) \frac{\mathcal{H}_0}{2k} \langle \eta^\dagger, e \rangle |I> \]

\textbf{Squeezed State!}

\textbf{Organize the result as a triple series:}

\[\epsilon, \eta, \Delta(\eta-e) \frac{\mathcal{H}}{p} \frac{\mathcal{H}^2}{p^2} \]

\textbf{Slow Roll} \quad \textbf{Sudden} \quad \textbf{Adiabatic}

\[\frac{\delta p}{p} \sim \frac{\mathcal{H}^2}{\dot{\phi}} (1 + \frac{1}{2} \Delta) \]

\[\mathcal{D} = \Delta(\eta-e) \frac{\mathcal{H}}{p} \sin \left(\frac{2p}{\mathcal{H}} \right) \]

\[+ \frac{\mathcal{H}^2}{p^2} \cos \left(\frac{2p}{\mathcal{H}} \right) \]

\[+ 2 \left(2 - \ln2 - \delta \right) \left(2\epsilon - \eta \right) - 2\epsilon \]
Focus on $O\left(\frac{H}{p}\right)$:

$$\Delta(\eta-e) \frac{H}{p} \sin\left(\frac{2p}{H}\right)$$

* Vanishes when $\Delta(\eta-e) \rightarrow 0$
* Vanishes when $p \rightarrow \infty$

Quantum No-Hair THM!

If the transition occurred ~ 60 e-folds before the exit, this could be 2 few $\%$.

Can be viewed as a potential diagnostic of short inflation...
SUMMARY

- There exist models which leave observable signatures in the CMB!

- Although they may require special particle physics (choice of scales, rationale for unification, new physics \(\sim 60\) e-folds before the exit), they are fully consistent with EFT local, causal, tachyon-free, obeying usual decoupling.

- If one abandons EFT, one can get larger signals, but it is not clear one can trust it.

- Hedging strategy: this may be worth pursuing since it could be one of few chances we get to see really high energy physics.
The Conclusion

Now, reader, I have told my dream to thee;
See if thou canst interpret it to me,
Or to thyself, or neighbour; but take heed
Of misinterpreting; for that, instead
Of doing good, will but thyself abuse:
By misinterpreting, evil ensues.

Take heed, also, that thou be not extreme,
In playing with the outside of my dream:
Nor let my figure or similitude
Put thee into a laughter or a feud.
Leave this for boys and fools; but as for thee,
Do thou the substance of my matter see.

Put by the curtains, look within my veil,
Turn up my metaphors, and do not fail,
There, if thou seekest them, such things to find,
As will be helpful to an honest mind.

What of my dross thou findest there, be bold
To throw away, but yet preserve the gold;
What if my gold be wrapped up in ore? —
None throws away the apple for the core.
But if thou shalt cast all away as vain,
I know not but 'twill make me dream again.